
Chapter 6

[145]

 {
product = factory.CreateProduct(productType);
//set product properties
product.OrderDate = Datetime.Now;
//reset the product count in the inventory as this product has been
//ordered
product.ResetInventory();
return product;
 }
}

In the above code, the ProductFactory class has abstracted the product creation
logic. So if there are new products to be added in future, we don't need to change
the code in the ProductManager class; only the factory class needs to be changed.
We have de-coupled the ProductManager class and made it more flexible by adding
another level of indirection in terms of a factory class.

Another example where you will find factory design useful is when you want your
application to be able to talk to different database types. You may not know which
database each of your clients (to whom you sold your application) has. It could be
MS SQL Server, Oracle, FireBird, PostGres, or MySql.

You have developed the data access layer classes for each of these databases in your
application code. Now you want your application to be able to instantiate any of the
DAL classes based on the actual customer database. Our application does not know
beforehand which database will be used. For such cases, and similar scenarios, the
factory design pattern can help.

We will see another slightly different, real world, practical example of a Factory
design in the next design pattern, Dependency Injection (DI).

Dependency Injection
The Dependency Injection and factory design patterns are very common, and
provide great flexibility in software development. Although most programmers have
come across these patterns, they may not grasp the concepts completely until they
see these patterns in action in real projects.

In this section, we will learn how to achieve loose coupling and "plug-and-play"
architecture using these patterns, with the help of a sample project—a flexible
encryption program. We will be focusing on the code from the viewpoint of
understanding the Dependency Injection design pattern. Therefore, the detailed
syntax and complete code will not be listed here. A complete working code for this
example is provided in the code bundle.

Design Patterns

[146]

The Dependency Injection (DI) design pattern is "a form of" the Inversion of Control
(IoC) design which is applied in many frameworks. DI gives the flexibility of
attaching a custom implementation such as a "plugin", without modifying existing
software. Dependency Injection can be achieved using Constructor, Setter, or
Interface Injection. In this chapter, we will learn and understand Interface Injection,
which is quite common and more flexible than the other two approaches.

Basic Approach
We will follow a set of steps to achieve Dependency Injection in our working sample,
as described below.

Step 1: Create an Interface
Let us start with our encryption program by authoring an interface so that others
can implement their own algorithmic implementations by defining these methods in
their own custom way:

 public interface IEncryptionAlgorithm
 {
 string Password
 {
 get;
 set;
 }
 byte[] RawInput
 {
 get;
 set;
 }

 byte[] Salt
 {
 set;
 }

 int KeySize
 {
 set;
 }
 byte[] Encrypt();
 byte[] Decrypt();
 bool CheckPassword();
 }

